Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124142, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493515

RESUMO

In this work, we investigated the oxidative stress-related biochemical alterations in red blood cells (RBCs) and their membranes with the use of spectroscopic techniques. We aimed to show their great advantage for the in situ detection of lipid classes and secondary structures of proteins without the need for their extraction in the cellular environment. The exposition of the cells to peroxides, t-butyl hydroperoxide (tBOOH) or hydrogen peroxide (H2O2) led to different degradation processes encompassing the changes in the composition of membranes and structural modifications of hemoglobin (Hb). Our results indicated that tBOOH is generally a stronger oxidizing agent than H2O2 and this observation was congruent with the activity of superoxide and glutathione peroxidase. ATR-FTIR and Raman spectroscopies of membranes revealed that tBOOH caused primarily the partial loss and peroxidation of the lipids resulting in loss of the integrity of membranes. In turn, both peroxides induced several kinds of damage in the protein layer, including the partial decrease of their content and irreversible aggregation of spectrin, ankyrin, and membrane-bound globin. These changes were especially pronounced on the membrane surface where stress conditions induced the formation of ß-sheets and intramolecular aggregates, particularly for tBOOH. Interestingly, nano-FTIR spectroscopy revealed the lipid peroxidative damage on the membrane surface in both cases. As far as hemoglobin was concerned, tBOOH and H2O2 caused the increase of the oxyhemoglobin species and conformational alterations of its polypeptide chain into ß-sheets. Our findings confirm that applied spectroscopies effectively track the oxidative changes occurring in the structural components of red blood cells and the simplicity of conducting measurements and sample preparation can be readily applied to pharmacological and clinical studies.


Assuntos
Eritrócitos , Peróxido de Hidrogênio , Humanos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Peróxidos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Lipídeos , Estresse Oxidativo
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121819, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36084582

RESUMO

In the present study, we characterized the secondary structure alterations of intact red blood cells (RBCs) cytosol with special attention to the sex-related alterations in 8- and 24-week-old female and male ApoE/LDLR-/- mice, compared to age-matched female and male C57BL/6J control animals. Results were obtained with previously established methodology based on Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR). Additionally, we evaluated 2,3-DPG levels in the RBCs and showed its potential link to the hemoglobin (Hb) secondary structure alterations. Considering Hb structure alterations probed by FTIR-ATR, the ratio of turns to α-helices in 8-week-old ApoE/LDLR-/- mice suggested more pronounced secondary structure alterations within the RBCs than in the age-matched control. Sex-related differences were observed solely in 24-week-old male ApoE/LDLR-/- mice, which showed statistically significant increase in the secondary structure alterations compared to 24-week-old female ApoE/LDLR-/- mice. Similar to the secondary structure alterations, no sex-related differences were observed in the levels of 2,3-DPG in RBCs, except for 24-week-old male ApoE/LDLR-/- mice, which showed significantly higher levels compared to the age-matched female ApoE/LDLR-/- mice. Considering the age-related alterations, we observed significant increases in the intracellular 2,3-DPG of RBCs with animals' age in all studied groups, except for female ApoE/LDLR-/- mice, where a significant difference was not reported. This suggests the clear correlation between secondary structure of Hb alterations and 2,3-DPG levels for male and female murine RBC and proves a higher resistance of older female RBCs to the secondary structure changes with progression of atherosclerosis. Moreover, it may be concluded that higher 2,3-DPG levels in RBCs occurred in response to the secondary structure alterations of Hb in ApoE/LDLR-/- mice.


Assuntos
Apolipoproteínas E , Eritrócitos , 2,3-Difosfoglicerato , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Cardiovasc Res ; 118(12): 2610-2624, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34617995

RESUMO

AIMS: Endothelial dysfunction (ED) and red blood cell distribution width (RDW) are both prognostic factors in heart failure (HF), but the relationship between them is not clear. In this study, we used a unique mouse model of chronic HF driven by cardiomyocyte-specific overexpression of activated Gαq protein (Tgαq*44 mice) to characterize the relationship between the development of peripheral ED and the occurrence of structural nanomechanical and biochemical changes in red blood cells (RBCs). METHODS AND RESULTS: Systemic ED was detected in vivo in 8-month-old Tgαq*44 mice, as evidenced by impaired acetylcholine-induced vasodilation in the aorta and increased endothelial permeability in the brachiocephalic artery. ED in the aorta was associated with impaired nitric oxide (NO) production in the aorta and diminished systemic NO bioavailability. ED in the aorta was also characterized by increased superoxide and eicosanoid production. In 4- to 6-month-old Tgαq*44 mice, RBC size and membrane composition displayed alterations that did not result in significant changes in their nanomechanical and functional properties. However, 8-month-old Tgαq*44 mice presented greatly accentuated structural and size changes and increased RBC stiffness. In 12-month-old Tgαq*44 mice, the erythropathy was featured by severely altered RBC shape and elasticity, increased RDW, impaired RBC deformability, and increased oxidative stress (gluthatione (GSH)/glutathione disulfide (GSSG) ratio). Moreover, RBCs taken from 12-month-old Tgαq*44 mice, but not from 12-month-old FVB mice, coincubated with aortic rings from FVB mice, induced impaired endothelium-dependent vasodilation and this effect was partially reversed by an arginase inhibitor [2(S)-amino-6-boronohexanoic acid]. CONCLUSION: In the Tgαq*44 murine model of HF, systemic ED accelerates erythropathy and, conversely, erythropathy may contribute to ED. These results suggest that erythropathy may be regarded as a marker and a mediator of systemic ED in HF. RBC arginase and possibly other RBC-mediated mechanisms may represent novel therapeutic targets for systemic ED in HF.


Assuntos
Insuficiência Cardíaca , Doenças Vasculares , Acetilcolina/metabolismo , Animais , Arginase/metabolismo , Doença Crônica , Modelos Animais de Doenças , Eicosanoides/metabolismo , Endotélio Vascular/metabolismo , Eritrócitos/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Dissulfeto de Glutationa/metabolismo , Camundongos , Camundongos Transgênicos , Óxido Nítrico/metabolismo , Superóxidos/metabolismo , Vasodilatação
4.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800818

RESUMO

This work presents a semi-quantitative spectroscopic approach, including FTIR-ATR and Raman spectroscopies, for the biochemical analysis of red blood cells (RBCs) supported by the biochemical, morphological and rheological reference techniques. This multi-modal approach provided the description of the RBC alterations at the molecular level in a model of accelerated aging induced by administration of D-galactose (D-gal), in comparison to natural aging. Such an approach allowed to conclude that most age-related biochemical RBC membrane changes (a decrease in lipid unsaturation and the level of phospholipids, or an increase in acyl chain shortening) as well as alterations in the morphological parameters and RBC deformability are well reflected in the D-gal model of accelerated aging. Similarly, as in natural aging, a decrease in LDL level in blood plasma and no changes in the fraction of glucose, creatinine, total cholesterol, HDL, iron, or triglycerides were observed during the course of accelerated aging. Contrary to natural aging, the D-gal model led to an increase in cholesterol esters and the fraction of total esterified lipids in RBC membranes, and evoked significant changes in the secondary structure of the membrane proteins. Moreover, a significant decrease in the phosphorous level of blood plasma was specific for the D-gal model. On the other hand, natural aging induced stronger changes in the secondary structures of the proteins of the RBCs' interior. This work proves that research on the aging mechanism, especially in circulation-related diseases, should employ the D-gal model with caution. Nonetheless, the D-gal model enables to imitate age-related rheological alterations in RBCs, although they are partially derived from different changes observed in the RBC membrane at the molecular level.


Assuntos
Senilidade Prematura/induzido quimicamente , Envelhecimento/sangue , Modelos Animais de Doenças , Membrana Eritrocítica/química , Galactose/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Senilidade Prematura/sangue , Animais , Citosol/química , Envelhecimento Eritrocítico/efeitos dos fármacos , Deformação Eritrocítica/efeitos dos fármacos , Índices de Eritrócitos/efeitos dos fármacos , Membrana Eritrocítica/efeitos dos fármacos , Radicais Livres/toxicidade , Galactose/farmacologia , Hemorreologia/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fósforo/sangue , Projetos de Pesquisa
5.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165972, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949768

RESUMO

In this work we applied a multimodal approach to define the age- and atherosclerosis-related biochemical and functional alterations in red blood cells (RBCs) in ApoE/LDLR-/- mice. Our results revealed that age-related changes in RBCs, such as decreases in RBC deformability and mean height, were more pronounced in ApoE/LDLR-/- mice than in age-matched control mice (C57BL/6J). The decreases in phospholipid content and level of lipid unsaturation were accompanied by an increase in cholesterol esters and esterified lipids in RBC membranes in aged C57BL/6J mice. The age-related decrease in the phospholipid content was more pronounced in ApoE/LDLR-/- mice. In contrast, the increase in the total lipid content in RBC membranes occurred only in ApoE/LDLR-/- mice with advanced atherosclerosis. The age-related alterations also included a decrease in the ratio of turns to α-helices in the secondary structure of hemoglobin (Hb) inside intact RBCs. On the other hand, an increase in the ratio of unordered conformations to α-helices of Hb was observed only in ApoE/LDLR-/- mice and occurred already at the age of 5-weeks. This was related to hypercholesterolemia and resulted in an increased oxygen-carrying capacity. In conclusion, progressive mechanical and functional alterations of RBCs in aged ApoE/LDLR-/- mice were more pronounced than in age-matched C57BL/6J mice. Although, several biochemical changes in RBCs in aged ApoE/LDLR-/- mice recapitulated age-dependent changes observed in control mice, some biochemical features of RBC membranes attributed to hypercholesterolemia were distinct and could contribute to the accelerated deterioration of RBC function in ApoE/LDLR-/- mice.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Eritrócitos/metabolismo , Receptores de LDL/deficiência , Fatores Etários , Animais , Apolipoproteínas E/metabolismo , Aterosclerose/patologia , Eritrócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/metabolismo
6.
Biochim Biophys Acta Mol Cell Res ; 1867(11): 118803, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32738251

RESUMO

The ability of hemoglobin (Hb) to transport respiratory gases is directly linked to its quaternary structure properties and reversible changes between T (tense) and R (relax) state. In this study we demonstrated that packed red blood cells (pRBCs) storage resulted in a gradual increase in the irreversible changes in the secondary and quaternary structures of Hb, with subsequent impairment of the T↔R transition. Such alteration was associated with the presence of irreversibly settled in the relaxed form, quaternary structure of Hb, which we termed R'. On the secondary structure level, disordered protein organization involved formation of ß-sheets and a decrease in α-helices related to the aggregation process stabilized by strong intermolecular hydrogen bonding. Compensatory changes in RBCs metabolism launched to preserve reductive microenvironment were disclosed as an activation of nicotinamide adenine dinucleotide phosphate (NADPH) production and increased reduced to oxidized glutathione (GSH/GSSG) ratio. For the first time we showed the relationship between secondary structure changes and the occurrence of newly discovered R', which through an artificial increase in oxyhemoglobin level altered Hb ability to bind and release oxygen.


Assuntos
Eritrócitos/ultraestrutura , Hemoglobinas/ultraestrutura , Oxigênio/metabolismo , Estrutura Secundária de Proteína , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Humanos , Modelos Moleculares , Análise Espectral Raman
7.
Nanomedicine ; 28: 102221, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32438105

RESUMO

Based on the multimodal characterization of human red blood cells (RBCs), the link between the storage-related sequence of the nanoscale changes in RBC membranes in the relation to their biochemical profile as well as mechanical and functional properties was presented. On the background of the accumulation of RBCs waste products, programmed cell death and impaired rheological properties, progressive alterations in the RBC membranes including changes in their height and diameter as well as the in situ characterization of RBC-derived microparticles (RMPs) on the RBCs surface were presented. The advantage of atomic force microscopy (AFM) in RMPs visualization, even at the very early stage of vesiculation, was shown based on the results revealed by other reference techniques. The nanoscale characterization of RMPs was correlated with a decrease in cholesterol and triglycerides levels in the RBC membranes, proving the link between the lipids leakage from RBCs and the process of vesiculation.


Assuntos
Eritrócitos/metabolismo , Microscopia de Força Atômica/métodos , Micropartículas Derivadas de Células/metabolismo , Contagem de Eritrócitos , Citometria de Fluxo , Humanos
8.
Molecules ; 25(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070018

RESUMO

In fertilized fish eggs, lipids are an energy reservoir for the embryo development and substrate for organogenesis. They occur in the cytoplasmic area and form lipid droplets (LDs), but also the yolk egg is composed of lipids and proteins. Insight on the LD formation and distribution and their interactions with other cellular organelles could provide information about the role based on the egg development. For non-destructive, macro-scale visualization of biochemical components of fish eggs, such as lipids proteins and water, near-infrared (NIR) imaging is the method of choice. Mid-infrared (MIR) and Raman spectroscopy imaging were used to provide details on chemical composition of LDs and other egg organelles. NIR imaging illustrated main compartments of the egg including membrane, LDs, yolk, relative protein, and lipid content in well-localized egg structures and their interactions with water molecules. In the yolk, a co-existence of lipids and proteins with carotenoids and carbohydrates was detected by Raman spectroscopy. Results showed a prominent decrease of unsaturated fatty acids, phospholipids, and triglycerides/cholesteryl esters content in the eggs due to the embryo development. An opposite trend of changes was observed by MIR spectroscopy for the glycogen, suggesting that consumption of lipids occurred with production of this carbohydrate. The comprehensive vibrational spectroscopic analysis based on NIR, MIR, and Raman imaging is a unique tool in studying in situ dynamic biological processes.


Assuntos
Gotículas Lipídicas/química , Espectrofotometria Infravermelho/métodos , Análise Espectral Raman/métodos , Animais , Gema de Ovo/classificação , Ovos/análise , Fosfolipídeos/química , Zigoto/química
9.
Sci Rep ; 9(1): 15475, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664105

RESUMO

The significance and utility of innovative imaging techniques in arterial clot analysis, which enable far more detailed and automated analysis compared to standard methods, are presented. The examination of two types of human thrombi is shown, representing the main ischemic stroke etiologies: fibrin-predominant clot of large vessel origin and red blood cells-rich clot of cardioembolic origin. The synergy effect of Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy (RS) and atomic force microscopy (AFM) techniques supported by chemometrics in comparison with reference histological staining was presented. The main advantage of such approach refers to free-label and non-destructive quantitative imaging of clinically valid, biochemical parameters in whole sample (FTIR-low resolution) and selected regions (RS-ultra-high resolution). We may include here analysis of lipid content, its distribution and total degree of unsaturation as well as analysis of protein content (mainly fibrin and hemoproteins). The AFM studies enhanced the vibrational data, showed clearly shape and thickness of clot features as well as visualized the fibrin framework. The extraordinary sensitivity of FTIR and RS imaging toward detection and discrimination of clinically valid parameters in clot confirms its applicability in assessment of thrombi origin.


Assuntos
Isquemia Encefálica/metabolismo , Microscopia de Força Atômica/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Acidente Vascular Cerebral/metabolismo , Trombose/metabolismo , Isquemia Encefálica/complicações , Humanos , Acidente Vascular Cerebral/complicações , Trombectomia/métodos , Trombose/complicações , Trombose/cirurgia
10.
J Biophotonics ; 12(10): e201900067, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31265171

RESUMO

Despite advanced diagnostic techniques used for detecting cancer, this disease still remains a leading cause of death in the developed world. What is more, the greatest danger for patients is not related with growing of tumor but rather with metastasis of cancer cells to the distant organs. In this study, Fourier transform infrared (FTIR) spectroscopy was used to track chemical changes in blood plasma to find spectral markers of metastatic breast cancer during the disease progression. Plasma samples were taken 1-5 weeks after orthotropic inoculation of 4T1 metastatic breast cancer cells to mice. The earliest changes detected by FTIR spectroscopy in plasma were correlated with unsaturation of phospholipids and secondary structures of proteins that appeared 2 and 3 weeks, respectively, after 4T1 cells inoculation (micrometastatic phase). Significant alternations in the content and structure of lipids and carbohydrates were identified in plasma at the later stages (macrometastatic phase). When large primary tumors in breast and macrometastases in lung were developed, all bands in FTIR spectra significantly differed from those at earlier phases of the cancer progression. In conclusion, we showed that each phase of the breast cancer progression and its pulmonary metastasis can be characterized by a specific panel of spectral markers.


Assuntos
Neoplasias da Mama/patologia , Progressão da Doença , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/secundário , Plasma/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Animais , Linhagem Celular Tumoral , Camundongos
11.
Anal Chem ; 91(15): 9867-9874, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31241915

RESUMO

This work presents the potential of vibrational spectroscopy, Vis and NIR Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) in reflection and transmission modes, and nano-FTIR microscopy to study the biochemical alterations in membranes of isolated and intact red blood cells (RBCs). The main goal was to propose the best spectroscopic method which enabled following biochemical alterations in the RBC membranes and then to translate this spectroscopic signature of degradation to in situ analysis of RBCs. Two models corresponding to two distinct cases of RBC membrane conditions were employed, and they were derived from healthy and young mice and mature mice with advanced atherosclerosis. It was shown that each technique provided essential information about biochemical alterations of the isolated membranes as well as membranes in the intact RBCs, which can be used in the development of a rapid and in situ analytical technology. Finally, we proposed that the combination of macro- and nanoprobing implemented in IR spectroscopy provided a wide chemical characterization of the RBC membranes, including alterations in lipid and protein fractions. This study also examined the effect of the sample preparation to determine destructive factors influencing a spectroscopic analysis of isolated membranes and intact RBCs derived from healthy and disease-affected mice.


Assuntos
Membrana Eritrocítica/química , Nanotecnologia/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Animais , Colesterol/química , Esterificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipídeos/química
12.
Biochim Biophys Acta Mol Basis Dis ; 1864(11): 3574-3584, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30251677

RESUMO

An application of FTIR spectroscopic imaging for the identification and visualization of early micrometastasis from breast cancer to lungs in a murine model is shown. Spectroscopic and histological examination is focused on lung cross-sections derived from animals at the early phase of metastasis (early micrometastasis, EM) as compared to healthy control (HC) and late phase of metastasis (advanced macrometastasis, AM) using murine model of metastatic breast cancer with 4T1 cells orthotopically inoculated. FTIR imaging allows for a detailed, objective and label-free differentiation and visualization of EM foci including large and small micrometastases as well as single cancer cells grouped in clusters. An effect of the EM phase on the entire lung tissue matrix as well as characteristic biochemical profiles for HC and advanced macrometastasis were determined from morphological and spectroscopic points of view. The extraordinary sensitivity of FTIR imaging toward EM detection and discrimination of AM borders confirms its applicability as a complementary tool for the histopathological assessment of the metastatic cancer progression.


Assuntos
Adenocarcinoma de Pulmão/patologia , Neoplasias da Mama/patologia , Micrometástase de Neoplasia/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Adenocarcinoma de Pulmão/secundário , Animais , Matriz Extracelular/patologia , Feminino , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Sensibilidade e Especificidade , Análise de Célula Única/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...